SPRAWDŹ STATUS ZAMÓWIENIA
POMOC I KONTAKT
Ulubione
Kategorie

Miniatury matematyczne 83

O Akcji

Akcja Podziel się książką skupia się zarówno na najmłodszych, jak i tych najstarszych czytelnikach. W jej ramach możesz przekazać książkę oznaczoną ikoną prezentu na rzecz partnerów akcji, którymi zostali Fundacja Dr Clown oraz Centrum Zdrowego i Aktywnego Seniora. Akcja potrwa przez cały okres Świąt Bożego Narodzenia, aż do końca lutego 2023.
Dowiedz się więcej
  • Promocja
    image-promocja

książka

Wydawnictwo Aksjomat Piotr Nodzyński
Data wydania 2023
Oprawa miękka
Liczba stron 64

Opis produktu:

<p>Podobnie jak w poprzednich latach, Komitet Organizacyjny konkursu Kangur Matematyczny przygotował zestaw opracowań popularyzujących matematykę, zredagowanych w formie krótkich artykułów tradycyjnie już zwanych miniaturami. Niniejszy tomik, na który składają się trzy takie artykuły, dedykowany jest przede wszystkim uczniom szkół ponadpodstawowych, nauczycielom a także wszystkim pasjonatom matematyki. Tematyka tegorocznych miniatur jest bardzo różnorodna, liczymy więc na to, że każdy Czytelnik znajdzie coś dla siebie. W książce bowiem, obok geometrii, która pojawiała się w Miniaturach Matematycznych wielokrotnie, znajdują się również zagadnienia z obszaru logiki matematycznej oraz rachunku prawdopodobieństwa, które gościły na ich stronach nieco rzadziej. W pierwszym artykule, zatytułowanym `Czy ktoś tu mówi prawdę?`, omówiona została pewna metoda rozwiązywania zadań o łotrach i rycerzach zamieszkujących fikcyjną wyspę. Te popularne łamigłówki rozwiązywane są często w sposób intuicyjny i stanowią świetną gimnastykę dla umysłu, uczą też porządkowania sposobów myślenia opartych na zdrowym rozsądku. Autorki podchodzą do prezentowanych zagadnień w sposób bardziej formalny, pokazując, że wiele z nich można rozwiązać, używając pojęć i symboliki logiki matematycznej. Drugi artykuł, o intrygującym tytule `Pewien paradoks kostek do gry` pokazuje, że nawet tak proste z pozoru przedmioty, jak kostki do gry, mogą mieć zaskakujące własności probabilistyczne - wystarczy tylko inaczej zaznaczyć oczka na ich ściankach. Autor w przystępny sposób prowadzi Czytelnika do zrozumienia pojęcia kostki `silniejszej/słabszej` od innej kostki oraz tytułowego paradoksu, który orzeka, że własność `bycia kostką silniejszą/słabszą` nie jest własnością przechodnią. Oznacza to, że istnieją trójki kostek, z których jedna jest silniejsza od drugiej i druga od trzeciej, ale jednocześnie trzecia nie jest wcale słabsza od tej pierwszej, co więcej jest od niej silniejsza. Można również konstruować zestawy złożone z większej liczby kostek o opisanej własności. Kostki takie noszą nazwę kostek Efrona. Ostatnia miniatura, zatytułowana `O prostych i krzywych Simsona`, z pewnością zainteresuje miłośników geometrii. Punktem wyjścia do rozważań zaprezentowanych w artykule jest twierdzenie Wallace`a Simsona, z którego wiadomo, że każdy punkt leżący na okręgu opisanym na trójkącie wyznacza jedną jedyną prostą (zwaną prostą Simsona), przechodzącą przez rzuty prostokątne tego punktu na proste zawierające boki trójkąta. Autor prezentuje jak można uogólnić pojęcie prostej Simsona i skonstruować jej odpowiednik dla innych wielokątów wpisanych w okrąg oraz jakie ma ona wówczas własności. Aby ułatwić Czytelnikowi wyobrażenie nowo poznawanych pojęć, Autor zamieścił w miniaturze dużo rysunków wykonanych w znanych programach komputerowych.</p>

Produkt wprowadzony do obrotu na terenie UE przed 13.12.2024

S
Szczegóły
Dział: Książki
Kategoria: Dla dzieci,  Książki edukacyjne,  Gry, zabawy, łamigłówki,  nauka liczenia,  Książki kreatywne i aktywizujące
Wydawnictwo: Aksjomat Piotr Nodzyński
Wydawnictwo - adres:
wydawnictwo@aksjomat.torun.pl , http://www.aksjomat.torun.pl , PL
Oprawa: miękka
Okładka: miękka
Rok publikacji: 2023
Wymiary: 240x163
Liczba stron: 64
ISBN: 9788366838314
Wprowadzono: 05.06.2023

RECENZJE - książki - Miniatury matematyczne 83 - PRACA ZBIOROWA

Zaloguj się i napisz recenzję - co tydzień do wygrania kod wart 50 zł, darmowa dostawa i punkty Klienta.

0/5 ( brak ocen )
  • 5
  • 4
  • 3
  • 2
  • 1

Wpisz swoje imię lub nick:
Oceń produkt:
Napisz oryginalną recenzję: