Opis produktu:
Rozwiązania typowych problemów dotyczących przygotowania danych, konstruowania modeli i MLOps
Wzorce projektowe opisane w tej książce obejmują najlepsze praktyki i rozwiązania powtarzalnych problemów w uczeniu maszynowym. Autorzy, troje inżynierów z firmy Google, skatalogowali sprawdzone metody, aby pomóc badaczom danych sprostać typowym problemom występującym w całym procesie uczenia maszynowego. Te wzorce projektowe kodyfikują doświadczenie setek ekspertów w prostych, przystępnych radach.
W tej książce znajdziesz szczegółowe wyjaśnienia 30 wzorców reprezentacji danych i problemów, operacjonalizacji, powtarzalności, odtwarzalności, elastyczności, objaśnialności i bezstronności. Każdy wzorzec obejmuje opis problemu, różnorodne potencjalne rozwiązania oraz rekomendacje dotyczące wyboru najlepszej techniki w danej sytuacji.
Nauczysz się:
*Rozpoznawać i minimalizować typowe problemy występujące podczas uczenia, oceniania oraz wdrażania modeli uczenia maszynowego
*Przedstawiać dane dla różnych typów modeli uczenia maszynowego, w postaci reprezentacji wektorowych, krzyżowania cech i nie tylko
*Wybierać prawidłowy typ modelu dla konkretnych problemów
*Konstruować wydajną pętlę uczenia z zastosowaniem punktów kontrolnych, strategii rozkładu i strojenia hiperparametrów
*Wdrażać skalowalne systemy uczenia maszynowego, które można uczyć ponownie i aktualizować, aby odzwierciedlać nowe dane
*Interpretować predykcje modeli dla interesariuszy i zapewniać, że modele traktują użytkowników bezstronnie
*Zwiększać dokładność, odtwarzalność i elastyczność
Dzięki wspaniałym, różnorodnym przykładom ta książka jest obowiązkową lekturą dla badaczy danych i inżynierów uczenia maszynowego dążących do zrozumienia sprawdzonych rozwiązań złożonych problemów uczenia maszynowego.
-David Kanter
Dyrektor wykonawczy, ML Commons
Jeśli chcesz oszczędzić sobie siniaków na drodze do konstruowania rozwiązań uczenia maszynowego, Lak, Sara i Michael to osoby, na które możesz liczyć.
-Will Grannis
Dyrektor zarządzający,
Cloud CTO Office, Google
Valliappa (Lak) Lakshmanan jest globalnym kierownikiem działu analizy danych i rozwiązań sztucznej inteligencji w Google Cloud.
Sara Robinson jest rzeczniczką deweloperów w zespole Google Cloud, skupiającą się na uczeniu maszynowym.
Michael Munn jest inżynierem rozwiązań uczenia maszynowego w Google, gdzie pomaga klientom projektować, implementować i wdrażać modele uczenia maszynowego.
Produkt wprowadzony do obrotu na terenie UE przed 13.12.2024